Some Integral Identities for Spherical Harmonics in an Arbitrary Dimension

نویسندگان

  • Weimin Han
  • Kendall Atkinson
  • Hao Zheng
چکیده

Spherical harmonics in an arbitrary dimension are employed widely in quantum theory. Spherical harmonics are also called hyperspherical harmonics when the dimension is larger than 3. In this paper, we derive some integral identities involving spherical harmonics in an arbitrary dimension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Arbitrary BRDF Shading for Low-Frequency Lighting Using Spherical Harmonics

Real-time shading using general (e.g., anisotropic) BRDFs has so far been limited to a few point or directional light sources. We extend such shading to smooth, area lighting using a low-order spherical harmonic basis for the lighting environment. We represent the 4D product function of BRDF times the cosine factor (dot product of the incident lighting and surface normal vectors) as a 2D table ...

متن کامل

Some Identities for Chandrasekhar Polynomials

Basic techniques of linear algebra are used to derive some identities involving the Chandrasekhar polynomials that play a vital role in the spherical-harmonics (A) solution to basic radiative-transfer problems. @ 1997 Elsevier Science Ltd. All rights reserved

متن کامل

Two-Particle Cluster Integral in the Expansion of the Dielectric Constant

We study in detail the two-particle cluster integral in the cluster expansion for the effective dielectric constant of a suspension of spherically symmetric polarizable inclusions embedded in a uniform medium. Although our form for the integrand differs from that derived earlier by Finkel'berg and by Jeffrey, we show that the integral is equivalent. The two-body dielectric problem for particles...

متن کامل

Casimir ‎effects‎‎ of nano objects in fluctuating scalar and electromagnetic fields: Thermodynamic investigating

 Casimir entropy is an important aspect of casimir effect and at the nanoscale is visible. In this paper, we employ the path integral method to ‎obtain a‎ ‎general‎ relation for casimir entropy and ‎i‎nternal energy of arbitrary shaped objects in the presence of two, three and four dimension scalar fields and ‎the‎ electromagnetic field. For this purpose, using Lagrangian and based on a perturb...

متن کامل

Nonlocal Electrostatics in Spherical Geometries Using Eigenfunction Expansions of Boundary-Integral Operators.

In this paper, we present an exact, infinite-series solution to Lorentz nonlocal continuum electrostatics for an arbitrary charge distribution in a spherical solute. Our approach relies on two key steps: (1) re-formulating the PDE problem using boundary-integral equations, and (2) diagonalizing the boundary-integral operators using the fact that their eigenfunctions are the surface spherical ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011